Zum Inhalt springen

Wo das menschliche Gehirn an seine Grenzen kommt

Dortmund, 24. Mai 2022

Die Mikroskopie ist nur eines von vielen Anwendungsfeldern in der medizinischen Bildgebung, aus denen Künstliche Intelligenz (KI) bei der Verarbeitung enormer Datenmengen kaum mehr wegzudenken ist. Weil der Mensch kognitiv trotz bestehender Programme zur Bildauswertung an seine Grenzen kommt, entwickeln die KI-Experten am ISAS Augen und Gehirne für Computer. Warum die interdisziplinäre Zusammenarbeit ihrer Forschungsgruppen unerlässlich ist und worin die Vorteile liegen, berichten Prof. Dr. Anika Grüneboom, Leiterin Bioimaging, und Dr. Jianxu Chen, Leiter der Nachwuchsgruppe AMBIOM, jeweils in ihren Statements.

Prof. Dr. Anika Grüneboom und Dr. Jianxu Chen sprechen über Aufnahmen von Blutgefäßen im Unterkiefer der Maus.

Prof. Dr. Anika Grüneboom (links) und Dr. Jianxu Chen sprechen über Aufnahmen von Blutgefäßen im murinen Mandibel (Unterkiefer der Maus), die zuvor am Lichtblatt-Fluoreszenzmikroskop entstanden sind.

© ISAS

Prof. Dr. Anika Grüneboom, Leiterin Bioimaging

„Die Zellen in unseren Blutgefäßen sprechen miteinander. Wie sie sich miteinander austauschen, wie weit sie voneinander entfernt sind, all das liefert uns wichtige Erkenntnisse zu entzündlichen Erkrankungen. Dabei kommunizieren die Zellen unseres Immunsystems sowohl miteinander, als auch mit den Endothelzellen, die die innerste Schicht der Blutgefäße auskleiden. Diese Kommunikation steuert, wo sich die Immunzellen an die Blutgefäße heften, durch sie hindurch wandern und anschließend in das umliegende Gewebe gelangen, um dort die Entzündung zu bekämpfen. Bei Autoimmunerkrankungen wie der rheumatoiden Arthritis führt die Gewebeinfiltration der Immunzellen allerdings nicht zum Abheilen der Entzündung, sondern verschlimmert diese und führt letztlich dazu, dass die Erkrankung chronisch wird. Wir möchten also Kriterien definieren, mit denen man in Zukunft im Blut oder Gewebe jedes einzelnen Menschen diese Prozesse vor dem eigentlichen Krankheitsausbruch erkennen kann – also lange bevor diese Entzündungen chronisch werden.

Dafür untersuchen wir in meiner Arbeitsgruppe beispielsweise die Innenschicht der Blutgefäße unter dem Lichtblattfluoreszenz-Mikroskop. Wir erforschen, welche Zellen an den Entzündungsprozessen beteiligt sind, wie die Zellwände aussehen, wie weit die Zellen voneinander entfernt sind und wie die Zellen untereinander kommunizieren. Das Lichtblattfluoreszenz-Mikroskop weitet den Laserstrahl wie ein Blatt Papier auf. Diese dünne Lichtscheibe, die dabei entsteht, beleuchtet jede einzelne Ebene unserer Proben und macht von jeder Ebene eine Aufnahme. Die einzelnen Aufnahmen setzen wir später am Computer zu einem 3D-Modell zusammen. Aus einer einzelnen Probe unter dem Mikroskop entstehen durchschnittlich weit über 500 Bilder. Im Schnitt arbeiten wir mit mehr als 20 Proben pro Versuchsreihe. Die vielen Aufnahmen, die das Mikroskop macht, sind für uns eine große Herausforderung. Obwohl es heute schon Computerprogramme gibt, verbringen wir Forscher:innen immer noch sehr viel Zeit damit, die ganzen Informationen aus diesen Bildern auszuwerten. Hier kann uns Künstliche Intelligenz sehr viel besser weiterhelfen als ein einzelnes Computerprogramm.“

Was bedeutet KI für die Analyse von Mikroskop-Aufnahmen?

Um die Zusammenarbeit zwischen den Forschungsgruppen Bioimaging und AMBIOM geht es auch in diesem Video. 

Dr. Jianxu Chen, Leiter AMBIOM

„Kommunikation ist der Schlüssel – nicht nur zwischen den Zellen in unserem Körper, sondern auch zwischen unseren Arbeitsgruppen. Mit künstlicher Intelligenz (KI) können wir Unmengen an Daten zusammenführen. Es gibt hauptsächlich drei wichtige Dinge, die intelligente Maschinen beherrschen, die der Menschen einfach nicht schafft. Deshalb gibt es ein großes Potenzial für eine tiefere Synergie zwischen mikroskopischen Bildanalysen und KI.

Zunächst einmal können wir mithilfe von KI weitaus mehr Bilder analysieren und somit einen höheren Durchsatz erzielen als mit einem gewöhnlichen Computerprogramm. Intelligente Maschinen können große Mengen von Bildern mit einem präzisen Ergebnis analysieren. Zweitens ist es ein großer Vorteil, dass KI Dinge sehen kann, die für das menschliche Auge unsichtbar bleiben. KI ist in der Lage, jede Information in den Aufnahmen zu interpretieren. Zum Beispiel kann das menschliche Auge sich die Bilder ansehen und sich dabei auf die Dicke der Blutgefäße konzentrieren. KI hingegen kann dieselben Bilder betrachten, aber mehr auswerten: nicht nur die Dicke der Blutgefäße, sondern auch, wie rau ihre Oberfläche ist, was neben den Zellwänden passiert und noch viel mehr. Drittens: Unser menschliches Gehirn ist begrenzt aufnahmefähig, während intelligente Maschinen keine Einschränkung haben. Sie sind in der Lage, Informationen zu extrahieren und Wissen aufzubauen, das das menschliche Gehirn kaum verarbeiten kann. Deshalb programmiert meine Forschungsgruppe Algorithmen, die als Augen und Gehirne für Computer dienen.

Wenn wir unserer Algorithmen entwickeln, achten wir darauf, dass sie genau und gleichzeitig nachhaltig im Hinblick auf die Nutzung von Energieressourcen sind. Entscheidend ist auch, dass wir an eine transparente Wissenschaft glauben. Deshalb sind unsere Analysen vollständig reproduzierbar, denn die Arbeit meines Teams basiert auf Open Source. Für uns am ISAS ist es wichtig, dass Wissenschaftler:innen auf der ganzen Welt Zugang zu den KI-Methoden haben, die wir hier in Dortmund entwickeln.“

Das Bundesministerium für Bildung und Forschung fördert die MSCoreSysassoziierte Nachwuchsgruppe AMBIOM – Analysis of Microscopic BIOMedical Images unter dem Förderkennzeichen 161L0272.

Teilen

Weitere Beiträge

28. März 2024

Neue „grüne“ Mikroskopie: weniger Strom, dafür mehr Informationen über Immunzellen

Hochentwickelte Technologien wie hochauflösende Mikroskope produzieren große Datenmengen. Und die verbrauchen wiederum große Mengen an Strom. Hinzu kommen Kühlschränke für Proben, Abzüge und kleine technische Geräte. Während das ISAS strukturell umrüstet, um grüner zu werden, arbeiten Forschende am Institut bereits an Methoden, um die Mikroskopie generell energiesparender zu machen. Die Höchstleistung der Technologie stellt dabei kein Problem dar – im Gegenteil.

Das Bild zeigt eine schematische Darstellung der Datenverarbeitung in der Mikroskopie.
13. März 2024

Leberzirrhose: Wandernde Immunzellen als Frühwarnsystem

Für die Lebenserwartung von Patient:innen mit einer Leberzirrhose ist es entscheidend, ob und welche krankheitsassoziierten Komplikationen wie Infektionen auftreten. Bislang fehlte jedoch die Möglichkeit, Letztere frühzeitig vorherzusagen. Ein Problem, das Ärzt:innen daran hindern kann, rechtzeitig Antibiotika zu verabreichen oder sogar eine Lebertransplantation durchzuführen. Am ISAS gingen Forschende um Prof. Dr. Matthias Gunzer deswegen der Frage nach: Könnte die Beweglichkeit bestimmter Immunzellen der entscheidende Hinweis auf eine Verschlechterung des Gesundheitszustandes sein?

29. Februar 2024

3 Fragen an … Dr. Christopher Nelke

Als Teilnehmer des Clinician-Scientist-Programms und Arzt an der Klinik für Neurologie am Universitätsklinikum Düsseldorf (UKD) erforscht Dr. Christopher Nelke neuromuskuläre Erkrankungen. Im Interview berichtet er von seinem zweiwöchigen Gastaufenthalt am ISAS und den Herausforderungen, die sich zwischen Klinikbett und Forschung ergeben.

Das Bild zeigt Dr. Christopher Nelke im Labor. In den Händen hält er eine Probe. The picture shows Dr Christopher Nelke in the laboratory. He is holding a sample in his hands.
20. Februar 2024

SARS-CoV-2: Neueste Methoden klären Wirkstoffe und Wirkprinzip uralter Selbstmedikation auf

Prophylaktische, lindernde oder gar heilende Substanzen, meist Naturstoffe, sind der Naturmedizin seit Urzeiten bekannt. Doch wie sieht es bei viralen Infekten aus? Lassen sich Tees aus Salbei oder Perilla auch – egal ob vorbeugend oder heilsam – gegen Infektionen mit SARS-CoV-2 einsetzen? Diesen Fragen ging ein interdisziplinäres Team aus Forschenden um Prof. Dr. Mirko Trilling von der medizinischen Fakultät der Universität Duisburg-Essen (UDE) und Wissenschaftler:innen am ISAS während der Coronavirus-Pandemie nach.

Das Bild zeigt Prof. Dr. Mirko Trilling mit verschränkten Armen, an einer Wand lehnend. The picture shows Prof Dr Mirko Trilling with his arms folded, leaning against a wall.
7. Februar 2024

Eine lang gesuchte Kombinations-Methode in der Massenspektrometrie

Forschende, die komplexe Proben mittels Massenspektrometer analysieren, stehen oft vor dem Problem, dass die enthaltenen Substanzen fundamental verschieden sind. Einige sind etwa chemisch polar aufgebaut, andere unpolar. Bisher erforderte dies zwei aufwändige separate Analysen. Am ISAS hat ein Forscher nun eine Methode entwickelt, mit der auch wenig polare Substanzen in einer gängigen massenspektrometrischen Analyse für polare biologische Stoffe miterfasst werden.

Daniel Foest steht im Labor und hält ein Papier mit einer Leberprobe, die er am Massenspektrometer untersucht.
12. Januar 2024

„Meine Forschung ist ein Knochenjob"

Darleen Hüser sucht nach dem immunzellulären Fingerabdruck bei rheumatoider Arthritis. Woran die Doktorandin messerscharf forscht und wozu sie verschiedene Mikroskope benötigt, gibt sie im Interview preis.

Das Porträt zeigt ISAS-Doktorandin Darleen Hüser aus der Arbeitsgruppe Bioimaging.
21. Dezember 2023

Science Slam: humorvolle Wissenschaftskommunikation macht allen Spaß

Sprechendes Laborequipment, Künstliche Intelligenz und Expertise vom Nordpol - diese bunte Mischung an Themen zeichnete den jüngsten Science Slam am Institut aus. Wie Wissenschaftskommunikation allen Beteiligten Freude bereiten kann, stellten vier ISAS-Mitarbeitende mit ihrem Fachwissen und viel Witz unter Beweis.

Luisa Becher fotografiert die vier Teilnehmenden des ISAS Science Slam.
20. Dezember 2023

Die Kunst des Abwägens: Genauigkeit in der Bildanalyse

Welche Herausforderungen bei der Analyse von Mikroskop-Aufnahmen lassen sich mit Künstlicher Intelligenz meistern, wenn man diese frühzeitig einbezieht? Warum sollten Wissenschaftler:innen schon bei der Planung ihres Experiments auch an die Zielmetriken der Bildanalyse denken? Seine kürzlich im Fachjournal Nature Methods veröffentlichten Tipps hat Dr. Jianxu Chen nun als eine Art Checkliste für Forschende zusammengestellt.

Die Abbildung zeigt eine Wage und symbolisiert das Gleichgewicht zwischen Analyse und Genauigkeit bei der Validierung von biomedizinischen Aufnahmen.
1. Dezember 2023

Knochenforschung: ISAS am neuen Sonderforschungsbereich „DIONE“ beteiligt

Um den entzündungsbedingten Knochenabbau geht es beim von der Deutschen Forschungsgemeinschaft jüngst geförderten bundesweiten Projekt. Forschende aus Dortmund, Dresden, Erlangen/Nürnberg und Ulm wollen herausfinden, wie genau entzündliche Erkrankungen - etwa rheumatoide Arthritis oder Darmerkrankungen - die Knochen schädigen. Ihre Forschung soll unter anderem helfen, neue Therapien für skelettassoziierte Erkrankungen zu identifizieren.

Knochenstruktur mit Osteoporose.