Zum Inhalt springen

Machine Learning für Frühwarnsysteme in der Klinik?

Dortmund, 23. Mai 2024

Künstliche Intelligenz (KI) hat sich in den vergangenen Jahren zu einem unverzichtbaren Werkzeug der Gesundheitsforschung entwickelt. Um große Datensätze zu analysieren, setzen Forschende dabei vermehrt auf Machine Learning (ML). Dieser Teilbereich der KI ermöglicht Computern, aus Daten zu lernen und Muster in ihnen zu erkennen. So können Forschende komplexe Zusammenhänge, etwa zwischen Krankheitsverläufen und Symptomen, besser verstehen. Klinische Daten sind jedoch häufig vielschichtig. Veränderliche und untereinander verknüpfte Datenpunkte, wie die Werte aus aufeinanderfolgenden Bluttests, bringen Standard-ML-Algorithmen schnell an ihre Grenzen. Forscher des ISAS, der Otto-von-Guericke Universität Magdeburg, der Universität Bielefeld und des Deutschen Zentrum für Hochschul- und Wissenschaftsforschung in Hannover setzen deswegen gemeinsam mit Kooperationspartnern aus den Universitätsklinika Leipzig und Greifswald auf eine alternative ML-Methode. Am Beispiel eines Modells zur Vorhersage einer Sepsis (Blutvergiftung), konnte das Team zeigen: Nicht nur die Daten selbst, sondern auch die Verbindungen zwischen den Datenpunkten liefern wichtige Informationen für eine frühzeitige Diagnose.  

In der klinischen Praxis herrscht oft ein Wettlauf gegen die Zeit. Um Erkrankungen entsprechend behandeln zu können, ist es deswegen essenziell, sie früh zu diagnostizieren. So zum Beispiel bei einer Sepsis (s. Infobox). Die lebensgefährliche Infektion schreitet oft so schnell voran, dass sich mit jeder Stunde, in der nicht behandelt wird, das Sterberisiko der Patient:innen um rund acht Prozent erhöht1. Im Anfangsstadium ist eine sich anbahnende Sepsis oft jedoch nur schwer erkennbar. Besteht ein Verdacht, können Ärzt:innen zwar zunächst mit einem Breitbandantibiotikum behandeln. Doch die spezifische Diagnose mittels Bakterienkultur oder Fieberbildbestimmung kostet Zeit. Steht final fest, wie und gegen welches Bakterium behandelt werden muss, kämpfen Mediziner:innen häufig gegen eine schon fortgeschrittene und schwer zu behandelnde Entzündung.

SEPSIS

Sepsis, auch bekannt als Blutvergiftung, ist eine tödliche Erkrankung, die jährlich mehr Menschenleben kostet als Brust-, Prostata- und Darmkrebs zusammen2. Die Erkrankung beginnt, wenn das Immunsystem es nicht schafft, einen lokalen Infekt einzugrenzen und sich Boten- und Giftstoffe über den Blutkreislauf verbreiten. Der Körper reagiert, indem er Leukozyten (weiße Blutkörperchen) ausschickt, um die Pathogene (Erreger) zu bekämpfen. Das kann dazu führen, dass sich die Blutgefäße weiten. Weil damit der Blutdruck fällt, werden lebenswichtige Organe wie Lunge, Nieren oder Herz nicht mehr ausreichend versorgt und können in schweren Fällen versagen. Die Patient:innen geraten in einen septischen Schock. Es droht eine akute Lebensgefahr.

Machine Learning soll frühe Diagnose ermöglichen 

Machine Learning (s. Infobox) könnte Ärzt:innen in Zukunft helfen, zeitkritischen Erkrankungen frühzeitig zu diagnostizieren: „Mit KI lässt sich aus dem Blutbild vorhersagen, welche Patient:innen Gefahr laufen könnten, beispielsweise eine Sepsis zu entwickeln“, sagt Prof. Dr. Robert Heyer, Leiter der Nachwuchsgruppe Mehrdimensionale Omics-Datenanalyse am ISAS. Entsprechende Modelle gebe es bereits. „Doch sie geraten an ihre Grenzen, wenn es darum geht, komplexe Zeitreihen zu berücksichtigen“, ergänzt der Forscher. Zeitreihen bestehen aus Abfolgen von Datenpunkten, die in regelmäßigen Zeitintervallen gesammelt werden. In der Klinik könnten sie beispielsweise Informationen über die Veränderung von Vitalparametern wie Blutwerte, Herzfrequenz, oder Blutzuckerspiegel von Patient:innen enthalten.

Portrait von Prof. Dr. Robert Heyer.

Unsere Ergebnisse unterstreichen, wie wichtig regelmäßig erhobene Daten von Patient:innen als Basisinformationen für Vorhersagemodelle in der Gesundheitsforschung sind.

Prof. Dr. Robert Heyer

Das interdisziplinäre Forschenden-Team untersuchte die Performance einer speziellen Art von Algorithmen, genannt Graph Neural Networks (GNNs). Sie eignen sich besonders, um Daten zu analysieren, die als Graphen organisiert sind – wie etwa Zeitreihen. In einem Graph sind die Datenpunkte (Knoten) über sogenannte Kanten miteinander verbunden. Sie repräsentieren die Beziehungen der Knoten untereinander. So entstehen komplexe Netzwerkstrukturen, in denen die Knoten über ihre eigenen Informationen hinaus Informationen über ihre benachbarten Knoten berücksichtigen. Indem sie den Verknüpfungen im Datennetz folgen, entschlüsseln die GNNs wie sich unterschiedliche Faktoren gegenseitig beeinflussen und sie decken Zusammenhänge auf. „Unser Ziel war es herauszufinden, inwiefern sich GNNs für die Analyse komplexer klinischer Daten eignen und ob die Integration von Zeitreihen die Vorhersagegenauigkeit der Modelle verbessert“, berichtet Daniel Walke, Doktorand an der Otto-von-Guericke-Universität Magdeburg und Erstautor des gemeinsamen Preprints (Vorabveröffentlichung einer wissenschaftlichen Arbeit, die noch nicht im Peer-Review-Prozess begutachtet wurde).

Portrait von Daniel Walke.

Daniel Walke ist Doktorand in der Arbeitsgruppe Datenbanken und Software Engineering an der Otto-von-Guericke-Universität Magdeburg.

© Privat.

MACHINE LEARNING

Machine Learning (ML) ist eine Disziplin der Künstlichen Intelligenz. Computer werden mithilfe des ML so trainiert, dass sie Daten und früheren Erfahrungen selbstständig verarbeiten und sich entsprechend anpassen. Ein Beispiel für ML sind Künstliche Neuronale Netze (KNNs), die dem menschlichen Gehirn nachempfunden sind. Sie bestehen aus künstlichen Neuronen, die in Schichten angeordnet und miteinander verbunden sind. Diese Neuronen verarbeiten Eingaben, führen Berechnungen durch und geben Ausgaben aus. Durch das Trainieren des Netzwerks mit Beispieldaten kann es Muster und Zusammenhänge erkennen, um Aufgaben wie Vorhersage oder Mustererkennung zu lösen. Graph Neural Networks (GNNs) sind eine besondere Form der KNNs. Sie können zusätzlich Informationen von verknüpften Messungen berücksichtigen, was oft als „message-passing“ bezeichnet wird. Für ihre Vorhersagen und Klassifizierungen nutzen GNNs die Struktur und Beziehungen (Kanten) innerhalb eines Graphen um zu verstehen, wie die Datenpunkte (Knoten) untereinander agieren und sich gegenseitig beeinflussen.

Zeitreihen verbessern die Vorhersagekraft

Als Grundlage diente den Forschenden ein Datensatz mit Informationen von über 528.000 Personen, die zwischen den Jahren 2014 und 2021 in den Pflegestationen (mit Ausnahme der Intensivpflegestation) der Universitätsklinika Leipzig und Greifswald behandelt wurden. Im Laufe ihres Aufenthalts erlitten einige von ihnen eine Sepsis, andere nicht. Mithilfe der umfassenden Daten aus Leipzig trainierten die Forschenden zunächst ihre GNNs, rückblickend die Wahrscheinlichkeit einer Sepsis vorherzusagen. Die Anwendung der GNNs auf den Datensatz aus Leipzig, sowie einen weiteren aus Greifswald zeigte ähnliche Leistungen im Vergleich zu herkömmlichen ML-Algorithmen und anderen Arten von Neuronalen Netzen. Deutlich bessere Ergebnisse erzielte die Anwendung von Zeitreihendaten mit GNNs, welche die Messungen desselben Patienten integrieren. Statt wie zuvor ähnliche Messungen verschiedener Patient:innen untereinander zu verknüpfen, stellen die Knoten jeweils vollständige Blutbilder von nur jeweils einer Person zu unterschiedlichen Zeitpunkten dar. Um die Zuverlässigkeit der Vorhersagen zu messen, nutzen Forschende die sogenannte AUROC-Kurve (Area Under the Receiver Operating Characteristic Curve). Je näher der Wert an 1 liegt, desto besser ist die Leistung des Modells. Heyer und sein Team konnten die AUROC-Werte durch Integration der Zeitreihen von weniger als 0.88 auf bis zu über 0.95 verbessern. „Dass die Zeitreihen die Zuverlässigkeit der Vorhersage so stark beeinflussen, unterstreicht, wie wichtig regelmäßig erhobene Daten von Patient:innen als Basisinformationen für Vorhersagemodelle in der Gesundheitsforschung sind“, resümiert Heyer.

Keine Blackbox: Medizin braucht Transparenz 

Derzeit ist noch weitgehend ungetestet, wie gut sich GNNs wirklich in den medizinischen Alltag integrieren lassen. Eine weitere Herausforderung: „GNNs und andere komplexe ML-Algorithmen, zum Beispiel XGBoost, gelten häufig als Blackboxes, bei denen nicht nachvollziehbar ist, was im Modell passiert. Dies schränkt ihre Interpretierbarkeit und Transparenz ein, die für medizinische Anwendungen jedoch unerlässlich sind“, schreiben Heyer und seine Mit-Forschenden in ihrem Paper. Die Autoren legten deshalb Wert darauf zu verstehen, worauf die Algorithmen ihre Vorhersagen basierten. „Wir haben es deswegen nicht bei der Blackbox belassen, sondern versucht herauszufinden, was die Algorithmen von den Patient:innen-Daten gelernt haben. Wir wollten wissen, welche Faktoren hinter ihren Vorhersagen stehen“, berichtet Heyer. Ihre Analyse zeigt in puncto Sepsis: Neben der veränderlichen Zahl der weißen Blutkörperchen spielen vor allem Wechselwirkungen mit anderen Blutzelltypen eine entscheidende Rolle.

Fortschrittliche ML-Tools können potenziell unzählige Menschenleben retten – nicht nur im Fall einer Sepsis, sondern auch bei anderen Erkrankungen. So könnten GNN-Analysen von Blutbilddaten in Zukunft etwa dabei helfen, die Diagnose von Thrombosen oder Leukämie zu verbessern.

Lesetipp

Walke, D., Steinbach, D., Gibb, S., Kaiser, T., Saake, G., Ahrens, P., Broneske, D., Heyer, R.
(2023). Edges are all you need: Potential of Medical Time Series Analysis with Graph Neural Networks. PREPRINT (Version 1) available at Research Square: https://doi.org/10.21203/rs.3.rs-3573549/v1.

 

1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210984/
2 https://www.england.nhs.uk/blog/beating-sepsis-with-early-detection-and-prompt-treatment/

(Cheyenne Peters/ Ute Eberle)

Teilen

Weitere Beiträge

12. Juni 2024

Einladung zur Science Night 2024: Immersives 3D-Erlebnis „Die geheime Welt des Immunsystems“

In den Körper eintauchen und das Herz nach einem Infarkt aus verschiedenen Blickwinkeln betrachten – am 27. September 2024 ist dies bei der Science Night möglich. Beim Kooperationsprojekt des storyLab kiU der Fachhochschule Dortmund und des ISAS erwartet Besucher:innen im Dortmunder U ein einmaliges dreidimensionales Erlebnis in Bild und Klang. Der Eintritt ist frei.

6. Juni 2024

Was machst du am ISAS, Yvonne?

Was bedeutet eigentlich gute wissenschaftliche Praxis? Und was sind die Aufgaben einer designierten Ombudsperson? Dr. Yvonne Reinders gibt einen Einblick in ihre ehrenamtliche Arbeit.

Portrait von Dr. Yvonne Reinders.
8. Mai 2024

Alarmstufe rot: Schülerinnen erforschten beim Girls‘ Day das Immunsystem

Welche Alarmglocken läuten, wenn unser Immunsystem angegriffen wird? Warum kommt es auch ohne Eindringlinge von außen zu Infektionen? Und was haben ein Herzinfarkt und eine Erkältung gemeinsam? Diesen Fragen und noch vielen mehr sind beim diesjährigen Girls' Day am ISAS 12 Schülerinnen auf den Grund gegangen.

Das Bild zeigt einen Teil der Schülerinnen zusammen mit Luisa Röbisch, Dr. Anika Grüneboom und Dr. Christiane Stiller, während sie im Labor stehen und in die Kamera schauen.
2. Mai 2024

Schwefelwasserstoff: Das erstaunliche Molekül, das lebenswichtige Funktionen reguliert & den Alterungsprozess bekämpft

Schwefelwasserstoff gilt als hochgiftig. Dennoch erfüllt das faulriechende Gas in unseren Zellen viele lebenswichtige Funktionen. Als Gasotransmitter kann es beispielsweise innerhalb von Zellen und zwischen ihnen Signale übermitteln. Auch bei der Sauerstoffversorgung im Blut spielt Schwefelwasserstoff eine wichtige Rolle – das haben Forschende um Dr. habil. Miloš Filipović am ISAS erst kürzlich herausgefunden.

Porträt Dr. habil. Miloš Filipović.
18. April 2024

PODCAST »NACHGEFORSCHT – DIE LIVESCHALTE INS LABOR« Folge 9: Hinter den Kulissen der Mikroskopie – die Arbeitswelt einer Technischen Assistentin

Im Labor stets den Durchblick zu behalten, ist nur eine der vielen Aufgaben von Luisa Röbisch. Sie ist Technische Assistentin in der Arbeitsgruppe Bioimaging. Wie die Arbeit mit hochmodernen Mikropen aussieht und wie ihre Leidenschaft für das winzig Kleine begann, berichtet die Biotechnologin in einer neuen Folge des ISAS-Podcasts.

28. März 2024

Neue „grüne“ Mikroskopie: weniger Strom, dafür mehr Informationen über Immunzellen

Hochentwickelte Technologien wie hochauflösende Mikroskope produzieren große Datenmengen. Und die verbrauchen wiederum große Mengen an Strom. Hinzu kommen Kühlschränke für Proben, Abzüge und kleine technische Geräte. Während das ISAS strukturell umrüstet, um grüner zu werden, arbeiten Forschende am Institut bereits an Methoden, um die Mikroskopie generell energiesparender zu machen. Die Höchstleistung der Technologie stellt dabei kein Problem dar – im Gegenteil.

Das Bild zeigt eine schematische Darstellung der Datenverarbeitung in der Mikroskopie.
13. März 2024

Leberzirrhose: Wandernde Immunzellen als Frühwarnsystem

Für die Lebenserwartung von Patient:innen mit einer Leberzirrhose ist es entscheidend, ob und welche krankheitsassoziierten Komplikationen wie Infektionen auftreten. Bislang fehlte jedoch die Möglichkeit, Letztere frühzeitig vorherzusagen. Ein Problem, das Ärzt:innen daran hindern kann, rechtzeitig Antibiotika zu verabreichen oder sogar eine Lebertransplantation durchzuführen. Am ISAS gingen Forschende um Prof. Dr. Matthias Gunzer deswegen der Frage nach: Könnte die Beweglichkeit bestimmter Immunzellen der entscheidende Hinweis auf eine Verschlechterung des Gesundheitszustandes sein?

29. Februar 2024

3 Fragen an … Dr. Christopher Nelke

Als Teilnehmer des Clinician-Scientist-Programms und Arzt an der Klinik für Neurologie am Universitätsklinikum Düsseldorf (UKD) erforscht Dr. Christopher Nelke neuromuskuläre Erkrankungen. Im Interview berichtet er von seinem zweiwöchigen Gastaufenthalt am ISAS und den Herausforderungen, die sich zwischen Klinikbett und Forschung ergeben.

Das Bild zeigt Dr. Christopher Nelke im Labor. In den Händen hält er eine Probe. The picture shows Dr Christopher Nelke in the laboratory. He is holding a sample in his hands.
20. Februar 2024

SARS-CoV-2: Neueste Methoden klären Wirkstoffe und Wirkprinzip uralter Selbstmedikation auf

Prophylaktische, lindernde oder gar heilende Substanzen, meist Naturstoffe, sind der Naturmedizin seit Urzeiten bekannt. Doch wie sieht es bei viralen Infekten aus? Lassen sich Tees aus Salbei oder Perilla auch – egal ob vorbeugend oder heilsam – gegen Infektionen mit SARS-CoV-2 einsetzen? Diesen Fragen ging ein interdisziplinäres Team aus Forschenden um Prof. Dr. Mirko Trilling von der medizinischen Fakultät der Universität Duisburg-Essen (UDE) und Wissenschaftler:innen am ISAS während der Coronavirus-Pandemie nach.

Das Bild zeigt Prof. Dr. Mirko Trilling mit verschränkten Armen, an einer Wand lehnend. The picture shows Prof Dr Mirko Trilling with his arms folded, leaning against a wall.