Zum Inhalt springen

„Ich sehe die Zukunft der Analytik im 3D-Druck“

Dortmund, 7. Oktober 2022

Um Stoffe zu analysieren und unbekannte Bestandteile zu identifizieren, stehen Wissenschaftler:innen eine Vielzahl moderner Analyseverfahren zur Verfügung. Dazu zählt auch die Ionenmobilitätsspektrometrie. Forscher:innen am ISAS ist es im Jahr 2021 erstmals gelungen, ein vollständig funktionsfähiges Ionenmobilitätsspektrometer (IMS) mittels 3D-Druck herzustellen. Ihre Ergebnisse haben sie im renommierten Journal Materials Today veröffentlicht. Nun beantwortet Dr. Sebastian Brandt, Physiker und korrespondierender Autor der Publikation, im Interview Fragen zu den Vorteilen der Entwicklung.

Dr. Sebastian Brandt mit seinem IMS aus dem 3D-Drucker.

Dr. Sebastian Brandt zeigt im Labor das erste IMS aus dem 3D-Drucker.

© ISAS

Mittels Ionenmobilitätsspektrometrie lassen sich geladene, gasförmige Moleküle anhand ihrer individuellen Geschwindigkeit in einem elektrischen Feld charakterisieren. Gegenüber anderen Analysemethoden zeichnet sich die Ionenmobilitätsspektrometrie bei geringem instrumentellen Aufwand gleichzeitig durch eine hohe Sensitivität und kurze Messzeiten aus. Sie detektiert einzelne Analytmoleküle in zehn Milliarden Gasmolekülen bei einer Messdauer von unter einer Sekunde.

Wie kam die Idee zustande, ein IMS ausschließlich mittels 3D-Drucker herzustellen?

Brandt: In unserer Arbeitsgruppe Miniaturisierung haben wir schon länger mit dem Gedanken gespielt, ein komplexes technisches Gerät mithilfe unserer 3D-Drucker zu drucken. Die Idee für das vollständige Drucken des IMS kam uns irgendwann, da wir bereits einzelne kleine Teile gedruckt hatten, um herkömmliche IMS nach unseren Wünschen anzupassen. Diese nachträglichen Änderungen sind jedoch schwierig und zeitaufwändig – so wie der gesamte Bau eines IMS selbst auch. Hier am ISAS übernimmt beides sonst die Werkstatt, die für jedes neue Modell eine neue Skizze anfertigen muss. Deswegen wollten wir zunächst nur einen Prototyp mit dem 3D-Drucker herstellen und optimieren, der die anschließende Fertigung durch die Kolleg:innen in der Werkstatt erleichtert. Das hat dann aber so gut funktioniert, dass wir uns darüber hinaus intensiv damit beschäftigt haben.

Welchen Vorteil bringt ein IMS aus dem 3D-Drucker?   

Brandt: Ein erheblicher Vorteil ist definitiv der geringe Materialverbrauch. In der Regel stellt man ein IMS subtraktiv her. Das heißt, man nimmt etwas von einem Materialblock ab, bis es die gewünschte Form hat. Der Rest landet im Müll. Dagegen ist der 3D-Druck ein schnelles und additives Verfahren. Wir verbrauchen beim 3D-IMS nur das Material, das wir wirklich benötigen. Dies macht das IMS aus dem 3D-Drucker insgesamt günstiger, schneller und umweltfreundlicher als herkömmlich produzierte IMS. Im Vergleich zur subtraktiven Fertigungsmethode können wir momentan die Maschineneinsatzzeit beim 3D-IMS annähernd halbieren. Auch die Kosten der eingesetzten Materialien sinken auf ein Viertel. Aktuelle Entwicklungen zeigen zudem, dass es möglich ist, das IMS auf eine noch geringere Druckzeit zu optimieren. Außerdem arbeitet der 3D-Drucker annähernd vollständig autonom. Lediglich eine geringe Nachbearbeitung durch den Menschen ist notwendig, sodass wir auch die Einsatzzeit von Bediener:innen erheblich verringern können.

Ein anderer Punkt ist die Flexibilität. In unserem 3D-IMS haben wir ein magnetisches Klick-System eingebaut, sodass wir die Teile sehr einfach modular austauschen können. So können wir beispielsweise binnen kurzer Zeit das Bradbury Nielsen Gate oder die Länge der Driftröhre je nach Probe bzw. Analyt mittels 3D-Druck nicht nur variieren, sondern auch bei nur kurzer Geräteabschaltung austauschen. Das erlaubt es uns, Proben verschiedener Beschaffenheit zu untersuchen, also sowohl flüssige Proben, wie etwa Blut oder Urin, als auch gasförmige Proben, wie Atemluft. Außerdem können wir so neue Module einfach ausprobieren. Der Weg von der Idee in die Anwendung ist damit um ein Vielfaches verkürzt und wesentlich günstiger.

Lesetipp:

Drees C, Höving S, Vautz W,  Franzke J, Brandt S. 3D-printing of a complete modular ion mobility spectrometer. Materials Today, Vol. 44, S. 58–68. https://doi.org/10.1016/j.mattod.2020.10.033

Wofür eignet sich ein 3D-IMS?

Brandt: Früher nutzte man die handlichen IMS fast ausschließlich zur Drogen- oder Gefahrstoffdetektion. Mittlerweile stoßen sie jedoch auch in der biomedizinischen und forensischen Forschung auf Interesse. Ärzt:innen können sie beispielsweise dazu nutzen, um die Atemluft von Patient:innen auf bestimmte bakterielle oder virale Erreger, beispielsweise bei einer Lungenentzündung, zu untersuchen. Auch Medikamente, wie etwa das Anästhetikum Propofol, kann die IMS in der Ausatemluft detektieren und so die Überwachung einer Narkose vereinfachen. Trotz vielseitiger Anwendungsmöglichkeiten ist ein IMS jedoch noch keine massentaugliche Technik.  Allerdings sind die Anschaffungskosten für einen einfachen 3D-Drucker in Anbetracht der Produktionszeit und -kosten für ein 3D-IMS geringer als bei einem herkömmlich produzierten IMS. Zudem ist das Handling für den 3D-Druck schnell erlernt.

Welche Rolle spielen andere Messinstrumente aus dem 3D-Drucker?   

Brandt: Ich sehe die Zukunft der Analytik in der Nutzung von additiven Fertigungsmethoden wie dem 3D-Druck, zumindest träume ich davon. Ich denke jedoch auch realistisch und bin mir der derzeitigen Grenzen bewusst. Eine Hürde stellen heute beispielsweise die richtigen Materialien dar. Die meisten kommerziell erhältlichen Stoffe für den 3D-Druck sind darauf ausgelegt, gut auszusehen und beispielsweise eine schöne Farbe zu haben. Für uns in der Analytik spielt die Optik keine Rolle, wir brauchen beim Material eine hohe Haltbarkeit und Kompatibilität mit den genutzten Chemikalien. Deswegen arbeiten wir in unserer Arbeitsgruppe momentan an eigenen Materialien, die unseren Anforderungen an Messinstrumente aus dem 3D-Drucker gerecht werden.

(Das Interview führte Cheyenne Peters.)

Teilen

Weitere Beiträge

22. Juli 2024

Das ISAS verabschiedet Prof. Dr. Norbert Esser in den Ruhestand

Nach mehr als zwei Jahrzehnten verabschiedete das ISAS Prof. Dr. Norbert Esser mit einem wissenschaftlichen Kolloquium in Berlin in den wohlverdienten Ruhestand.

Das Portraitfoto zeigt Prof. Dr. Norbert Esser.
10. Juli 2024

Schilddrüsenhormone: Taktgeber für das Herz?

Der Sonderforschungsbereich „Local Control of Thyroid Hormone Action – LOCOTACT“ untersucht die lokale Kontrolle der Wirkungen von Schilddrüsenhormonen in Organen wie etwa Herz oder Leber. Um neue Therapieansätze für beispielsweise Herz-Kreislauf-Erkrankungen finden zu können, wollen Forschende am ISAS wissen: Wie steuert der Körper den Transport, Stoffwechsel und Wirkmechanismus von Schilddrüsenhormonen im Herz?

Videograf André Zelck (rechts im Bild) begleitet die Doktorandin Stefanie Dörr (Kardiovaskuläre Pharmakologie) bei ihrer Arbeit am Echokardiographiegerät.
10. Juli 2024

Universitätsprofessur für „Künstliche Intelligenz für die Biomedizinische Analytik“

Das ISAS und die Universität Duisburg-Essen verstärken ihre bisherige Zusammenarbeit mit einer weiteren Professur nach dem Jülicher Modell. Bewerbungen sind bis 18. August 2024 möglich.

26. Juni 2024

Vom ISAS nach Harvard: ein besonderer Forschungsaufenthalt während der Promotion

In den Laboren der Arbeitsgruppe Bioimaging am ISAS ist es derzeit ungewöhnlich leer. Zwei der Doktorandinnen haben das Institut für einen mehrmonatigen Forschungsaufenthalt in den USA verlassen. Ein Interview mit der Leiterin der Forschungsgruppe, Prof. Dr. Anika Grüneboom, und Aussagen der beiden Reisenden geben einen Einblick in die Vorteile, die sich daraus für ihre eigenen wissenschaftlichen Karrieren und die Arbeit der gesamten Gruppe ergeben.

Flora Weber und Darleen Hüser stehen gemeinsam vor der Gordon Hall auf dem Harvard Gelände. Flora Weber and Darleen Hüser stand together in front of Gordon Hall on the Harvard campus.
19. Juni 2024

Was machst du am ISAS, Marcos?

Knapp 1.400 Kilometer liegen zwischen dem spanischen Saragossa, der Heimatstadt von Marcos Nadales Neira, und Dortmund. Wieso sich der gerade 18-Jährige für ein Praktikum am ISAS entschieden hat und was er sich von seiner Zeit am Institut erhofft, berichtet er für ISAS Kompakt.

Marcos Nadales Neira steht mit einer Pipette in der Hand im Labor.
12. Juni 2024

Einladung zur Science Night 2024: Immersives 3D-Erlebnis „Die geheime Welt des Immunsystems“

In den Körper eintauchen und das Herz nach einem Infarkt aus verschiedenen Blickwinkeln betrachten – am 27. September 2024 ist dies bei der Science Night möglich. Beim Kooperationsprojekt des storyLab kiU der Fachhochschule Dortmund und des ISAS erwartet Besucher:innen im Dortmunder U ein einmaliges dreidimensionales Erlebnis in Bild und Klang. Der Eintritt ist frei.

6. Juni 2024

Was machst du am ISAS, Yvonne?

Was bedeutet eigentlich gute wissenschaftliche Praxis? Und was sind die Aufgaben einer designierten Ombudsperson? Dr. Yvonne Reinders gibt einen Einblick in ihre ehrenamtliche Arbeit.

Portrait von Dr. Yvonne Reinders.
23. Mai 2024

Machine Learning für Frühwarnsysteme in der Klinik?

In vielen Praxen und Kliniken stellen sich Mediziner:innen täglich einem Wettlauf gegen die Zeit. Meistens gilt: Je schneller behandelt werden kann, desto besser für die Patient:innen. Die Diagnose sollte also möglichst früh feststehen. Hierbei könnte Künstliche Intelligenz zum Einsatz kommen. Ein interdisziplinäres Forschenden-Team hat untersucht, inwiefern sich Machine-Learning-Modelle für die Analyse von klinischen Daten eignen - beispielsweise um eine Sepsis (Blutvergiftung) früher als bisher möglich vorherzusagen.

Portrait von Prof. Dr. Robert Heyer.
8. Mai 2024

Alarmstufe rot: Schülerinnen erforschten beim Girls‘ Day das Immunsystem

Welche Alarmglocken läuten, wenn unser Immunsystem angegriffen wird? Warum kommt es auch ohne Eindringlinge von außen zu Infektionen? Und was haben ein Herzinfarkt und eine Erkältung gemeinsam? Diesen Fragen und noch vielen mehr sind beim diesjährigen Girls' Day am ISAS 12 Schülerinnen auf den Grund gegangen.

Das Bild zeigt einen Teil der Schülerinnen zusammen mit Luisa Röbisch, Dr. Anika Grüneboom und Dr. Christiane Stiller, während sie im Labor stehen und in die Kamera schauen.