Zum Inhalt springen

Alarmstufe rot: Schülerinnen erforschten beim Girls‘ Day das Immunsystem

Dortmund, 8. Mai 2024

Einen halben Tag lang konnten zwölf Schülerinnen beim Girls' Day 2024 als Nachwuchsforscherinnen in eigenen Experimenten herausfinden, wie man Bakterien jagen und in Schach halten kann, warum Organe mithilfe von Zimtsäureethylester  durchsichtig werden und was man bei einem Herzinfarkt unter dem Mikroskop sieht.

Zusammen mit den Doktoradinnen Antonia Fecke und Luisa Speicher, die bei der Veranstaltung als wissenschaftliche Begleitpersonen dabei waren, haben die Siebt- bis Neuntklässlerinnen einen praktischen Einblick in das Immunsystem erhalten – und viel über bakterielle und sterile Entzündungen erfahren. Unter der Anleitung von Dr. Christina Sengstock und Dr. Christiane Stiller lernten die Schülerinnen im Labor, Bakterienkulturen zu vermehren. Außerdem untersuchten sie die Wirkung von Silberacetat auf Escherichia coli. Mit Prof. Dr. Anika Grüneboom und Luisa Röbisch drehte sich alles um das Lichtblatt-Fluoreszenzmikroskop. Bevor sie Organe mit Zimtsäureethylester – einem Bestandteil des Zimtaromas behandelten und später bereits vorbehandelte Proben analysierten, stand für die Teilnehmerinnen ein Experiment mit Glasperlen für ein besseres Verständnis des optischen Clearings an.

Das Team Kommunikation koordinierte auch 2024 das Projekt Girls‘ Day am ISAS und erhielt diesmal tatkräftige Unterstützung bei der Organisation und Durchführung von Praktikantin Clara Manthey von der TU Dortmund. Im Vorfeld der Veranstaltung hatte bereits Luisa Becher, ebenfalls Studentin an der TU Dortmund, maßgeblich an der Konzeption und Vorbereitung mitgewirkt.

Im Bild pipettiert eine der Schülerinnen Nährmedium auf eine Agarplatte. Die Platte ist rechts im Bild nochmal detailliert zu sehen. In the picture, one of the students is pipetting culture medium onto an agar plate. A plate can be seen again in detail on the right of the picture.

Im Bakterien-Labor übt Jule (13) das Pipettieren. Die Arbeit findet die ganze Zeit neben einem Bunsenbrenner statt. Dieser bildet um seine Flamme einen sterilen Kreis, in dem sich keimfrei arbeiten lässt. Innerhalb dieser sterilen Zone trainiert Jule zunächst den Umgang mit der Pipette, erst mit Wasser und anschließend mit einem vorbereiteten Luria-Bertani-Medium-. Es handelt sich dabei um ein Nährmedium zur Kultivierung von Bakterien. Hierfür hat die 8-Klässlerin bereits eine neue sterile Plastikspitze auf die Pipette gesteckt, bevor sie das Medium auf der vorbereiteten Agarplatte ausbringt. Ziel dieses Experiments: Jule und die anderen Schülerinnen sollen den Umgang mit Bakterienkulturen (E. coli) lernen und erfahren, wie sie diese vermehren, um anschließend damit weiterzuarbeiten.

© ISAS (links) istockphoto/grebcha (rechts)

Das BIld zeigt zwei Schülerinnen, wie sie unter Anleitung von Dr. Christina Sengstock Nährmedium auf eine Agarplatte pipettieren. Rechts daneben ist eine Agarplatte mit Hemmhöfen um zwei mit Silberacetat behandelte Areale zu erkennen. The picture shows two students pipetting culture medium onto an agar plate under the guidance of Dr. Christina Sengstock. To the right is an agar plate with inhibition zones around two areas treated with silver acetate.

Nachdem die Schülerinnen sich mit dem Pipettieren vertraut gemacht haben, geht es an das „Hemmhof-Experiment“. Dr. Christina Sengstock (rechts im Bild) steht ihnen dabei zur Seite. Sara (14, Foto: Mitte) hat dafür vorher schon die Petrischale mit dem Nährboden beschriftet. Sie hält nun eine Agarplatte und eine Pipette in den Händen. Mit der Pipette tropft sie Luria-Bertani-Medium auf die Platte. Die Schülerin passt auf, dass sie die genau benötigte Menge an Flüssigkeit verwendet. Die Flüssigkeit haben die Schülerinnen vorher mit der Pipette aus einem Reagenzglas aufgenommen. Anschließend haben sie  das Medium auf der Platte verteilt, indem sie diese mit einem selbst gebogenen Glasspatel ausstrichen. Sophie (13) schaut dabei aufmerksam zu, bevor sie als nächstes selbst pipettieren wird. Das Ganze dient zur Vorbereitung des folgenden Versuchs. Hierfür werden die Schülerinnen Löcher in die Agarplatte stechen. Anschließend werden sie Silberacetat in den ausgestanzten Bereich pipettieren. Im realen Laboralltag kommen Agarplatten mit E.coli-Kulturen zum Einsatz. Die Silberionen besitzen eine antimikrobielle Wirkung – sie hemmen das Wachstum der Bakterien. Mit dem bloßen Auge lassen sich später Hemmhöfe um das mit Silberacetat behandelte Areal erkennen.

© ISAS

Links im Bild sind zwei Teilnehmerinnen zu sehen, wie sie ein Becherglas mit Speiseöl füllen. Rechts im Bild ist das gefüllte Glas und das darin enthaltene Acryl-Herz zu erkennen. The picture on the left shows two participants filling a beaker with cooking oil. The filled glass and the acrylic heart it contains can be seen on the right.

Aus dem Bakterien-Labor geht es für die jungen Nachwuchsforscherinnen in eines der Mikroskopie-Labore. Um zu verstehen, wie Organe für die Analyse am Lichtblatt-Fluoreszenzmikroskop ("Lightsheet“) transparent werden, erhalten die Schülerinnen einen Becher mit Glasperlen. Dieser ist Teil eines Experiments von Prof. Dr. Anika Grüneboom und Luisa Röbisch. Die beiden haben mit diesem Versuch das Prinzip des optischen Clearings veranschaulicht. Was Sophie (links) und Sara anfangs nicht sehen können, weil die Glasperlen kein Licht durchlassen und der Becher opak wirkt: Zwischen den Glasperlen liegen kleine rote Herzen aus Kunststoff. Die Schülerinnen gießen langsam Speiseöl in das Becherglas Das Öl verdrängt die Luft zwischen den Glasperlen. Der ähnliche Brechungsindex von Glas und Öl sorgt dafür, die Herzen in den Gläsern sichtbar werden.

© ISAS

Das Bild zeigt die Teilnehmerinnen bei der Arbeit mit den Organproben. In den Händen halten sie kleine Glasgefäße mit Ethanollösung und den Organen. The picture shows the participants working with the organ samples. They are holding small glass containers with ethanol solution and the organs.

Sara (rechts) und Sophie arbeiten mit Organproben. Vorsichtig bereiten Sie die filigranen Proben für den späteren Einsatz unter dem Lichtblatt-Fluoreszenzmikroskop vor. Mit Pinzetten greifen sie Herzen und Thymusdrüsen von Mäusen auf und nehmen diese aus einer Ethanol-Lösung heraus. Prof. Dr. Anika Grüneboom und Luisa Röbisch haben im Vorfeld für das Experiment Proben vom Herz, Darm und der Thymus vorbereitet und in die Ethanol-Lösung gelegt. Diese Alkohollösung dient dazu, die Proben zu entwässern. Die Schülerinnen legen die Proben vorsichtig in kleine mit Zimtsäureethylester gefüllte Behälter und verschließen das Glas. Der Zimtsäureethylester ist Bestandteil des patentierten Clearing-Verfahrens von Prof. Dr. Anika Grüneboom. (Anm. der Redaktion: Die Proben waren bereits vorhanden, für die Veranstaltung wurden keine Organentnahmen vorgenommen.)

© ISAS

Links im Bild schaut sich eine Schülerin eine Organprobe an und hält sie gegen das Licht. Rechts ist eine Lightsheetaufnahme des Herzenz zu sehen, nachdem sie am Computer zusammengesetzt wurde. n the left, a student looks at an organ sample and holds it up to the light. On the right is a lightsheet image of the heart after it has been assembled on the computer.

Jule (links) schaut sich interessiert den Darm an. Schon mit dem Auge sieht sie, dass dieser durchsichtig ist. Das Labor ist mit Rollos abgedunkelt, weil es im Anschluss für die Schülerinnen an das Lichtblatt-Fluoreszenzmikroskop gehen wird. Weil das Clearing mancher Organe mehrere Tage dauert, hatte Biotechnologin Luisa Röbisch einige Proben für den Girls’Day vorbereitet. Ein transparentes Herz wird Immunologin Prof. Dr. Anika Grüneboom später unter das „Lightsheet“ legen. Das Gerät fächert den punktförmigen Laserstrahl wie ein Blatt Papier (englisch: sheet) auf. Die dünne Lichtscheibe, die so entsteht, beleuchtet jede einzelne Ebene. Weil die Proben transparent sind, kann der Laser diese fast ungehindert durchdringen – und von jeder Ebene eine Aufnahme erstellen. Beim Girls‘ Day wird Grüneboom die einzelnen Aufnahmen eines Herzens nach einem Infarkt später mit den Schülerinnen besprechen. Und sie wird diese am Computer zu einem 3D-Modell zusammensetzen. (Anm. der Redaktion: Die Proben waren bereits vorhanden, für die Veranstaltung wurden keine Organentnahmen vorgenommen.)

© ISAS

Das Bild zeigt einen Teil der Schülerinnen zusammen mit Luisa Röbisch, Dr. Anika Grüneboom und Dr. Christiane Stiller, während sie im Labor stehen und in die Kamera schauen. Auf der rechten Seite ist eine Aufnahme des Herzgewebes mit dem Konfokal Mikroskop zu sehen. The picture shows some of the students together with Luisa Röbisch, Dr Anika Grüneboom and Dr Christiane Stiller as they stand in the lab and look into the camera. On the right is an image of the heart tissue taken with the confocal microscope.

Beim letzten Teil des Programms geht es darum, wie sich Erreger – in diesem Fall  E.coli-Bakterien – vermehren und nach einigen Tagen auf den Agarplatten aussehen. Außerdem Thema: Immunzellen wie Makrophagen, die nach einem Herzinfarkt mit dem „Aufräumen“ übertreiben und dem Körper schaden (sterile Entzündung). Dafür haben die Forscherinnen auch Aufnahmen gezeigt, die sie am Konfokal-Mikroskop gemacht hatten. Darauf zu sehen war ein Ausschnitt des Herzgewebes mit einer Ansammlung der Makrophagen. Anschließend beantworten Dr. Christiane Stiller (v.l.n.r.), Luisa Röbisch und Prof. Dr. Anika Grüneboom Fragen der Schülerinnen zu ihrem Berufsalltag. 

© ISAS

Gruppenfoto aller Teilnehmerinnen und Mitwirkenden im ISAS Foyer. Im Hintergrund buchstabieren große Ballons “I LOVE SCIENCE“. Group photo of all participants and contributors in the ISAS foyer. In the background, large balloons spell out “I LOVE SCIENCE“.

So viele kluge und neugierige Köpfe haben am Girls‘ Day am ISAS teilgenommen. Von den zwölf Schülerinnen gab es zum Abschluss positives Feedback für den Tag am Institut. Und wer weiß, vielleicht zeigt das Foto auch die nächste Generation von Frauen in der Forschung? Das Motto „I love Science“ trifft jedenfalls auf alle Anwesenden zu. Viel Freude bei der Durchführung der Experimente und beim Vorstellen ihrer Arbeit hatten auch (v.l.n.r.) Luisa Röbisch, Prof. Dr. Anika Grüneboom, Dr. Christiane Stiller, Cheyenne Peters (Team Kommunikation), Clara Manthey (Praktikantin im Team Kommunikation), Luisa Speicher und Antonia Fecke. (Anm. der Redaktion: Dr. Christina Sengstock und Sara Rebein fehlen auf dem Foto.)

© ISAS

Teilen

Weitere Beiträge

8. November 2024

Das Matroschka-Prinzip zur Analyse biologischer Strukturen

Im Projekt »KI-assistierte Bildgebung von großen Geweben« arbeiten mehrere ISAS-Forschungsgruppen an der Kombination verschiedener mikroskopischer und massenspektrometrischer Verfahren. Wie bei einer Matroschka-Puppe blickt das Team mit jedem Schritt tiefer in die biologischen Strukturen einer Probe hinein.

Flora Weber am Lichtblattfluoreszenzmikroskop.
31. Oktober 2024

KI im Gesundheitswesen: Warum ist es besser, klein statt groß zu denken?

Nachhaltigkeit ist ein wichtiges Thema, wenn es um künstliche Intelligenz in der Gesundheitsforschung geht. Eine Gruppe von internationen Forschenden, unter anderem aus dem ISAS, hat sich mit diesem Thema beschäftigt und dazu ein Perspective in Nature Machine Intelligence veröffentlicht. Einen Einblick gibt Prof. Dr. Yiyu Shi im Interview.

Portrait von Prof. Dr. Yiyu Shi.
25. Oktober 2024

Wertvolle Verbindungen: Dr. Saskia Venne

Dr. Saskia Venne hat von 2012 bis 2016 am ISAS promoviert. Heute ist sie Teamleiterin bei Boehringer Ingelheim Pharma. In diesem Interview gibt sie als Erste einen Einblick in die wertvollen Verbindungen innerhalb und außerhalb des Instituts, über die aktuelle und ehemalige ISAS-Forschende in den kommenden Wochen bei ISAS Kompakt berichten werden.

Dr. Saskia Venne.
21. Oktober 2024

Zwischen Fortschritt & Fußabdruck: Künstliche Intelligenz im Gesundheitswesen

Die Einsatzgebiete von Künstlicher Intelligenz im Gesundheitswesen nehmen kontinuierlich zu. Doch mit immer besseren und schnelleren Modellen drängt sich auch die Frage nach der Nachhaltigkeit auf. Eine Gruppe von internationen Forschenden, darunter Dr. Jianxu Chen vom ISAS, hat sich mit dem erhöhten Ressourcenverbrauch und möglichen Lösungsmöglichkeiten für das bevorstehende Nachhaltigkeitsproblem beschäftigt.

Dr. Jianxu Chen (links) und Prof. Dr. Yiyu Shi im Foyer des ISAS.
15. Oktober 2024

Wissenschaft trifft auf Kunst: Eintauchen in die geheime Welt des Immunsystems

Mithilfe von Mikroskopbildern in die kleinsten Strukturen des Herzenz eintauchen? Das war möglich bei der ersten Dortmunder Science Night. "Die geheime Welt des Immunsystems", das immersive 3D-Erlebnis des storyLab kiU der Fachhochschule Dortmund und des ISAS, ermöglichte Besucher:innen Immunzellen nach einem Herzinfarkt hautnah mitzuerleben.

Das Foto zeigt (v.l.n.r.) Dr. Malte Roeßing, Dr. Ali Ata Tuz, Lara Janz, Flora Weber, Sara Regein und Cheyenne Peters vor dem Stand des ISAS bei der Science Night 2024.
20. September 2024

„Book a Scientist“: Jetzt für virtuelles Gespräch mit Forschenden anmelden

Beim Format "Book a Scientist" können Wissenschaftsinteressierte individuelle Gesprächstermine mit Forschenden innerhalb der Leibniz-Gemeinschaft buchen. Mit dabei sind auch zwei ISAS-Forschende. Ihre Themen sind "übereifrige" Immunzellen nach einem Herzinfarkt sowie Tierversuche und ihre Alternativen.

Book a Scientist.
10. September 2024

Faszinierende Einblicke: virtuelle Welt im Klassenzimmer

Was ist eigentlich Realität? Wie nehmen wir unsere Umwelt wahr? Und wie kann erweiterte Realität Forschende bei ihrer Arbeit unterstützen? Gemeinsam mit der Klasse 3a der Don-Bosco-Grundschule in Bochum sind zwei ISAS-Forschende diese Fragen auf den Grund gegangen.

Marie steht im Klassenzimmer und trägt eine VR-Brille. In den Händen hält sie jeweils einen Controller.
29. August 2024

Wechselspiel von Proteinen legt jungen Patienten lahm

Zwei Mutationen im Erbgut eines Jungen führen zu der seltenen neuromuskulären Erkrankung NEDHFBA. Untersuchungen der Proben des jungen Patienten von Forschenden des Universitätsklinikums Essen und des ISAS geben Aufschluss über die bis dato unerkannten Mechanismen hinter den Beschwerden: Proteine beeinflussen die Entstehung der seltenen Erkrankung.

Bild von Dr. Andreas Hentschel, Mitarbeiter in der Arbeitsgruppe Translationale Analytik.
16. August 2024

„Wir wollen das Grundlagenverständnis für Krankheitsmodelle verbessern.“

Wieso ist es spannend die Lipidsignatur einzelner Zellen zu entschlüsseln? Und welche Zellart eignet sich besonders, um dieses Verfahren möglich zu machen? Die Antworten liefert Prof. Dr. Sven Heiles im Interview.

Portrait von Jun.-Prof. Dr. Sven Heiles.