Skip to content

Why are there several vaccines against COVID-19, but yet none against AIDS?

Dortmund, 14th June 2022

Portrait von Prof. Dr. Matthias Gunzer.

Prof Dr Matthias Gunzer heads the department of Biospectroscopy at ISAS and is Director of the Institute for Experimental Immunology and Imaging/Imaging Centre at Essen University Hospital.

© ISAS

Answer by Prof Dr Matthias Gunzer:

"First of all, one has to say that we in the western world are very lucky to only have to speak of HIV, the human immunodeficiency virus, and not of AIDS. The reason for this is our access to excellent medical care with so-called highly active antiretroviral therapies (HAART). These medications ensure that HIV-positive patients do not develop acquired immunodeficiency syndrome (AIDS). Unfortunately, the situation for those affected by HIV in other countries, such as in large parts of Africa, is worse. That is why we definetely need a vaccine in order to protect them from HIV.

Vaccination is the process of confronting the body with specific antigens; in the case of viral diseases such as COVID-19 or AIDS, these are components of the virus that causes the disease. The aim is for our body to produce antibodies and defence cells against the antigens. The result of a successful vaccination is then a protective immune response that can last for months or years.

Scientists have been researching HIV vaccines for decades. But of more than 400 clinical studies on possible vaccines that have taken place since 1987, none has been convincing in terms of the final result. However, this is by no means because too little research is being done on HIV. We can clearly see this in the successful treatment options that now exist, such as HAART. We should not forget that many years of research on HIV have also led to the fact that we now know a great deal about how antibodies work, for example – or about how to induce them particularly efficiently with a vaccine.

Compared to the coronavirus, however, the HI virus is incredibly variable: tens of thousands of new copies are created every day - in a single person. On average, each of these new copies carries at least one unique mutation. Therefore, over the years, a single person carries countless variants in their body, but only a few of these variants can be transmitted to others. The main problem that these variants pose for vaccines is that some mutations are located precisely in the parts of the virus that are usually attacked by the immune system. Therefore, mutations like these can help the virus remain unrecognised. A successful vaccine needs to elicit an immune response that can deal with this diversity in order to provide full protection against an infection.

In addition, unlike SARS-CoV-2, the HI virus is a true concealment artist. Parts of its surface are covered with a dense layer of sugar molecules - the glycan shield. This shield covers possible points of attack for antibodies. Although the coronavirus has such a sugar layer as well, the crucial areas of its spike protein remain uncovered. Thus, in the case of SARS-CoV-2, antibodies can recognise its spike protein and bind to it, thus neutralising the virus. The second hiding tactic that the HI virus uses is also tricky: the HI virus inserts its genetic blueprint into the DNA of its host, i.e. humans, and thus creates a hidden reservoir in the immune cells. This makes the HI viruses invisible to the immune system.

At present, six phase III trials are being conducted to investigate the efficacy and safety of potential HIV vaccines in large patient populations. Among the vaccine candidates are new variants such as those designed to elicit broadly neutralising antibodies and several based on mRNA molecules. Many people are already familiar with the latter because of the highly effective vaccines against COVID-19. That said, the research on HIV is ongoing - which is why, despite the challenges, we should by no means give up hope for an HIV vaccine."

(June 14, 2022)

Share

Further articles

30th April 2025

Humboldt Fellow Prof Dr Xiaowei Xu started at ISAS in March

Prof Dr Xiaowei Xu from the Chinese Guangdong Cardiovascular Institute is researching the clinical application of artificial intelligence (AI) in the context of cardiovascular diseases. For 18 months in total, he will be researching various AI methods for analysing cell images as a Humboldt Fellow at ISAS.

Prof Dr Xiaowei Xu in front of the ISAS city building.
22nd April 2025

Valuable Connections: Dr Mohammad Ibrahim AlWahsh

Dr Mohammad Ibrahim AlWahsh worked as a research assistant at ISAS during his doctorate. He is now Vice Dean of the Faculty of Pharmacy and Assistant Professor of Toxicological Pathology at Al-Zaytoonah University in Jordan. In the Kompakt series ‘Valuable Connections,’ he reports on his time at ISAS and his ongoing network with the institute.

Mohammad Alwahsh.
9th April 2025

Bacteria & Sweets: Schoolgirls Examine their Breath at the Girls’ Day

On Girls' Day 2025, twelve schoolgirls got to know the work of researchers and technical assistants at the institute. They investigated the cause of and fight against inflammation, went on the hunt for bacteria and used ion mobility spectrometry to analyze the aromatic substances of various sweets in their breath.

Luisa Speicher erklärt drei Mädchen den Vortexmischer.
27th March 2025

Valuable Connections: Dr Jianxu Chen

Dr Jianxu Chen leads the junior research group AMBIOM - Analysis of Microscopic BIOMedical Images at ISAS since 2021. He previously worked at the Allen Institute for Cell Science in Seattle, USA. In the ISAS -Kompakt series ‘Valuable Connections’, the computer scientist reports on his move to health research and to Germany.

Portrait von Dr.  Jianxu Chen.
12th March 2025

Two-step Analysis is a Thing of the Past Thanks to Innovative Mass Spectrometry

Fast and accurate mass spectrometric detection of non-polar substances such as cholesterol together with polar substances? And in just one analysis run? This is made possible by a new combination method that unites two ionization sources in one setup.

Daniel Foest steht im Labor und hält ein Papier mit einer Leberprobe, die er am Massenspektrometer untersucht.
26th February 2025

What are you doing at ISAS, Leon?

What do marshmallows and chocolate have to do with cell analysis? Leon is finding out the answer during his school internship at ISAS. For ISAS Kompakt, the 15-year-old talks about what else he is learning during his time at the institute.

Leon hält Marshmallows, Schokolade und die Hardware für sein Projekt zur Bilderkennung.
14th February 2025

Valentines’ Day: Perfect Couples in the Lab

On Valentine's Day, the editors of ISAS Kompakt wanted to know what makes our researchers' hearts beat faster. The examples from the laboratories of the Bioimaging and NMR Metabolomics research groups show that special bonds do not only exist in love, but also in science.

Porträt von Dr. Themistoklis Venianakis.
4th February 2025

Valuable Connections: Adrian Sebuliba

Adrian Sebuliba joined the ISAS junior research group AMBIOM in 2023 as a software engineer. Previously, he worked for a digital commerce platform for the chemical industry in Uganda. In the ISAS Kompakt series ‘Valuable Connections’, he reports on his move into health research, among other things.

Portrait of Adrian Sebuliba.
28th January 2025

A Small But Very Important Step

Susmita Ghosh joined the Biofluorescence research group at ISAS in October 2021. The PhD student has now received the first funding of her career for her pilot project “Dissecting the neutrophil-tumor cell interactome using SILAC-labelling”.

Portrait Susmita Ghosh.