Skip to content

New “Green” Microscopy: Less Electricity, but More Information on Immune Cells in Return

Dortmund, 28th March 2024

Large devices such as various mass spectrometers and microscopes, minor technical equipment, fume cupboards, refrigerators and freezers at minus 80 degrees Celsius – this is only a brief taste of all the technology for which ISAS needs electricity. In addition, there are other areas outside the laboratories which similarly require electrical power to operate. At the ISAS City location alone, electricity consumption amounted to 743,360 kilowatt hours in 2020. This is the same amount consumed on average by approximately 150 households of three or more persons in 2020.

"The more highly developed the technology, the greater the information output. This results in increasing volumes of data but unfortunately also in more computing power being required to process it,” says Prof Dr Matthias Gunzer, head of the Biospectroscopy department at ISAS and Director of the Institute for Experimental Immunology and Imaging at University Hospital Essen. In order to drive ISAS forward in terms of sustainability, the institute had put a cogeneration unit into operation in 2019, set everything in motion for a photovoltaic system and decided to use liquefied gas. But do these measures alone suffice in the interests of performing climate-friendly research that is fit for the future? Gunzer’s answer is this: “It is also important to reduce the energy consumption of the technologies used in research. But at the same time, we would still like to increase their performance.” He went on to say that what initially sounds like a contradiction in terms can be implemented with clever planning and actually involves fascinating research and development work.

Das Bild zeigt eine schematische Darstellung der Datenverarbeitung in der Mikroskopie.

© Flaticon / ISAS

Das Foro zeigt Prof. Dr. Matthias GUnzer im Porträt.

Prof Dr Matthias Gunzer heads the Biospectroscopy department and the Biofluorescence research group at ISAS. He is Director of the Institute for Experimental Immunology and Imaging at University Hospital Essen.

© ISAS / Hannes Woidich

Accurate image analysis despite low energy consumption

An example from the area of imaging makes one thing clear: technical progress goes hand in hand with ultra-high-resolution microscope images that have a high information content. These images generate large quantities of data. Storing and making this data available uses a lot of energy. In addition, analysis of the data using artificial intelligence (AI) requires substantial computing power, which in turn causes high power consumption. For this reason, AI specialists at ISAS are working towards reducing the energy consumed by data storage while still increasing the analysis quality of the images. To this end, they are first developing methods that make it possible to compress the data without losing key information. Less energy is consumed storing smaller files than larger ones. “We are also developing new software that extracts the maximum amount of image information from a kilowatt hour of electricity for the analysis calculations and, despite this low energy consumption, facilitates even more accurate image analyses than before,” adds Dr Jianxu Chen, head of the AMBIOM – Analysis of Microscopic BIOMedical Images – research group. But not only the processing and analysis of data play a role in reducing electricity consumption. For the ISAS researchers, what happens beforehand during microscopy work in the laboratory is crucial too.

Das Bild zeigt Dr. Jianxu Chen mit den beiden Doktoranden Yu Zhou und Justin Sonneck an einem Tisch. Im Hintergrund ist ein Bildschirm mit einer ihrer Anwendungen zu sehen.

Together with their research group leader Dr Jianxu Chen (centre), doctoral candidates Yu Zhou (left) and Justin Sonneck are developing various AI-based tools for green microscopy.

© ISAS/Hannes Woidich

ComplexEye: Thirty times less energy than conventional microscopy

In order to track individual cell movements and cell shapes in real time, researchers at University Hospital Essen and ISAS have developed the ComplexEye. The prototype brings together in a single measuring device 16 microscopes (96 are planned for the future) that can take images simultaneously over a certain period of time of immune cells such as neutrophil granulocytes, for example. The researchers then combine these images into video sequences (so-called movies) of hundreds of individual migrating immune cells to create a time-lapse video.

“Although it generates more images in a shorter time than conventional microscopes, the ComplexEye currently consumes around 30 times less energy than a conventional system for the same amount of information,” Gunzer explains.

Immune cells are constantly searching the body for infectious intruders or incipient malignant diseases. However, migrating immune cells can themselves cause damage as well. For example, infiltration of growing tumours with neutrophils is associated with a poor prognosis for patients. The ComplexEye makes it possible to achieve a high throughput analysis of the migration of immune cells and provides important information that researchers were previously not able to gather. For example, the new microscope could help discover new kinds of active agent for cancer treatment, the effectiveness of which is based on stopping neutrophils migrating into tumours.

In order to find out how existing pharmaceutical active ingredients influence the migration of neutrophil granulocytes, the Essen-based researchers associated the samples with different substances via the Lead Discovery Center, Dortmund, in each case. For the subsequent analysis of the immune cells, the Dortmund-based AI specialists programmed a tailored application in 2022. “We developed a software based on various methods of artificial intelligence because common computer programmes for biomedical research reach their limits with this large number of movies,” says Chen. This information gathered using ComplexEye and evaluated with the help of AI also makes new means of diagnostics possible – for example, to detect sepsis (blood poisoning) earlier and thus be better able to treat it.

Article Recommendation

Cibir, Z., Hassel, J., Sonneck, J., Kowitz, L., Beer, A., Kraus, A., Hallekamp, G., Rosenkranz, M., Raffelberg, P., Olfen, S., Smilowski, K., Burkard, R., Helfrich, I., Tuz, A. A., Singh, V., Ghosh, S., Sickmann, A., Klebl, A-K., Eickhoff, J. E., Klebl, B., Seidl, K., Chen, J., Grabmaier, A., Viga, R., Gunzer, M. (2023). ComplexEye: a multi-lens array microscope for high-throughput embedded immune cell migration analysis. Nat Commun 14, 8103. https://doi.org/10.1038/s41467-023-43765-3.

The MSCoreSys associated junior research group AMBIOM – Analysis of Microscopic BiOMedical Images is funded by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under the funding reference 161L0272.

(Sara Rebein)

Share

Further articles

21st October 2024

Between Progress and Footprint: Artificial Intelligence in Healthcare

The potential applications of artificial intelligence in healthcare are constantly increasing. However, with ever better and faster models, the question of sustainability is also coming to the fore. A group of international researchers, including Dr Jianxu Chen from ISAS's AMBIOM group, has been looking into the increased consumption of resources and possible solutions to the impending sustainability problem.

Dr. Jianxu Chen (links)  Prof. Dr. Yiyu Shi im Foyer des ISAS.
15th October 2024

Science Meets Art: Immersion in the Secret World of the Immune System

Diving into the smallest structures of the heart via microscope images? This was possible at the first Dortmund Science Night. "The secret world of the immune system", the immersive 3D experience by storyLab kiU at Fachhochschule Dortmund University of Applied Sciences and Arts and ISAS, gave visitors the chance to experience immune cells up close after a heart attack.

Das Foto zeigt (v.l.n.r.) Dr. Malte Roeßing, Dr. Ali Ata Tuz, Lara Janz, Flora Weber, Sara Regein und Cheyenne Peters vor dem Stand des ISAS bei der Science Night 2024.
20th September 2024

"Book a Scientist": Register Now for a Virtual Chat with Researchers

The format "Book a Scientist" offers those interested in science the opportunity to book individual appointments with researchers within the Leibniz Association. Among them are two ISAS researchers. Their topics are "overzealous" immune cells after a heart attack and animal experiments and their alternatives.

Book a Scientist.
10th September 2024

Fascinating Insights: Virtual World in the Classroom

What actually is reality? How do we perceive our environment? And how can augmented reality support researchers in their work? Along with class 3a of the Don Bosco elementary school in Bochum, two ISAS researchers explored these questions.

Marie steht im Klassenzimmer und trägt eine VR-Brille. In den Händen hält sie jeweils einen Controller.
29th August 2024

Protein interaction paralyses a young patient

Two mutations in the genetic material of a boy lead to the rare neuromuscular disease NEDHFBA. Investigations of the young patient's samples by researchers at Essen University Hospital and ISAS shed light on the previously unrecognized mechanisms behind the symptoms: Proteins influence the development of the rare disease.

Bild von Dr. Andreas Hentschel, Mitarbeiter in der Arbeitsgruppe Translationale Analytik.
16th August 2024

"We want to improve the fundamental understanding of disease models"

Why is it exciting to decode the lipid signature of individual cells? And which cell type is particularly suitable for allowing this process? Prof Dr Sven Heiles gives the answers in an interview.

Portrait von Jun.-Prof. Dr. Sven Heiles.
8th August 2024

"Fatty" signatures: How lipid patterns can be used as a diagnostic tool

Microglial cells, the immune cells of the central nervous system, are known for their different appearances. In order to demonstrate this heterogeneity for the first time at the lipid and thus metabolic level for individual cells, a team of researchers has set itself a special analysis goal: Decoding the unique and "fatty" signatures of individual cells.

Das Foto zeigt Jun.-Prof. Dr.-Ing. Sven Heiles und Doktorandin Chiahsin Chi am MALDI-Massenspektrometer.
2nd August 2024

Thrombocyte Proteome: Tracking down Life-threatening Events in the Bloodstream

Thrombocytes (blood platelets) can link up at lightning speed and block a vessel as a thrombus. Possible consequences include heart attacks or strokes. Scientists at ISAS are therefore looking for molecular markers for platelet activation. In future, this knowledge could help doctors recognise a thrombosis before it occurs and react accordingly.

Dr. Fiorella Solari.
5th July 2024

 Thyroid hormones: Timers for the heart?

The Collaborative Research Centre "Local Control of Thyroid Hormone Action - LOCOTACT" investigates the local control of the effects of thyroid hormones in organs such as the heart or liver. In order to find new therapeutic approaches for cardiovascular diseases, for example, researchers at ISAS want to know: How does the body control the transport, metabolism and mechanism of action of thyroid hormones in the heart?

Videograf André Zelck (rechts im Bild) begleitet die Doktorandin Stefanie Dörr (Kardiovaskuläre Pharmakologie) bei ihrer Arbeit am Echokardiographiegerät.