Skip to content

Leibniz Healthtech-Lecture: Anika Grüneboom Opens the Toolbox of Fluorescence Microscopy

Dortmund, 3rd December 2021

Imagine being able to observe the nervous or cardiovascular system from the outside, while it is working. A transparent human being would not only be incredibly exciting, but could certainly also clarify many medical questions about the genesis, early detection or therapy of diseases. After all, biological structures are incredibly complex. They consist of different tissues with various characteristics.

Transparency is Prof Dr Anika Grüneboom’s goal. "We need non-destructive and safe methods that allow us to look deep into the body," explained the immunologist and head of the Bioimaging working group at ISAS. The challenges and opportunities of these methods were the topic of the HealthTech Lecture "The Fluorescence Microscopy Toolbox - Building Bridges to Immunology" of the Leibniz Research Alliance “Leibniz Health Technologies” on November 22, 2021.

No "one size fits all" in microscopy

There is a lot to discover in Grüneboom's toolbox. To meet the diverse optical challenges of biological structures, the researcher and her team combine different microscopy techniques. "So far, there is no method that covers all scales in biological samples," said the biologist. For example, to understand an infection and the corresponding immune response, it is necessary to look at the process from different perspectives. One of the imaging techniques Grüneboom uses is fluorescence microscopy (see infobox). This form of light microscopy includes light sheet fluorescence microscopy. Here, a laser illuminates only one thin layer of the sample, for example tissue, at a time, without destroying it. The many individual images are later used to create a 3D model of the entire sample on the computer. However, light sheet fluorescence microscopy alone does not provide a "glass-like" result.

HealthTech-Lecture: Der Werkzeugkasten der Fluoreszenzmikroskopie (Prof. Anika Grüneboom, ISAS)

Grüneboom's patented clearing is used worldwide

Since tissue, for example, can absorb, reflect or scatter light, it prevents a deeper insight beyond the surface without chemical treatment. That is why Grüneboom works with a clearing method she has developed. With the help of cinnamic acid ethyl ester, a naturally occurring aromatic substance, she makes her samples transparent before she analyses them under the microscope. Thus, in 2019, the biologist succeeded in discovering a previously unknown anatomical structure: Blood vessels that run through the cortical bone of mice and serve as small "highways" for immune cells of the bone marrow. The unique feature of Grüneboom's technique, which is being used by researchers all over the world: The clearing can be reversed so that samples are not destroyed. In addition, her method is safe for everyday laboratory use, as it works without any toxic, carcinogenic or explosive chemicals.

Transparent human – no science fiction?

With the right "tools" – in this case, Grüneboom’s clearing – light sheet fluorescence microscopy offers enormous opportunities as a method of analysis. In order to better understand immune diseases or thromboses and to be able to diagnose them more quickly in the future, the Bioimaging group is conducting research on samples from mice. In response to a participant's question about human samples, Grüneboom replied: "In principle, my clearing can also be applied to human tissue samples.”

Artificial intelligence revolutionises the analysis

Grüneboom's method is not only relevant for application-oriented basic research. Fluorescence microscopy can also be used to optimise diagnostic procedures. For example, to detect changes in small vascular clusters (glomeruli) in the kidney. Instead of making histological sections of the kidney and measuring them manually, as is usually the case, an algorithm can recognise, count and analyse each of the approximately 15,000 glomeruli in a kidney from the fluorescence microscope images. "Artificial intelligence allows us to get much more precise statistics because we can not only see a section, but the whole organ," Grüneboom said. She is facing the challenge of analysing the enormously large amounts of data that arise with the new ISAS working group AMBIOM (Analysis of Microscopic BIOMedical Images), headed by Dr. Jianxu Chen, which specialises in artificial intelligence.

Anika Grüneboom.

© ISAS

In principle, my clearing can also be applied to human tissue samples.

Prof. Dr. Anika Grüneboom
Leibnitz-Institut für Analytische Wissenschaften – ISAS – e. V.

How does fluorescence work?

Fluorescence describes the property of substances to absorb short-wave light and to emit it at a different wavelength. In the process, the electrons of the molecule are temporarily excited before they fall back to their original energy level. This releases energy that we perceive as light. In order to be able to recognise certain structures with a fluorescence microscope, researchers stain samples with fluorescent dyes that have the above-mentioned properties. Some substances have a natural fluorescence, they are autofluorescent.

(Cheyenne Peters)

About Anika Grüneboom

Prof Dr Anika Grüneboom (35) has been heading the Bioimaging research group at ISAS since 2020 and holds a professorship for 'Experimental Biomedical Imaging' at the University of Duisburg-Essen (UDE). Born in Essen, she completed her biology studies at RWTH Aachen University from 2006 to 2011. For her doctorate (2017), she changed to the University Hospital Essen. Before being appointed professor at the UDE, she had been a group leader at the University Hospital Erlangen since 2017, where she investigated rheumatological and immunological issues using imaging techniques. Grüneboom has received several awards for her research.

Share

Further articles

8th September 2025

3 Questions for Susmita Ghosh

How does gut microbiota affect the immune system? Susmita Ghosh conducts research on proteins and immune cells at ISAS. In this interview, the biologist talks about her work and explains how gut flora and the immune system could affect the outcomes of a stroke.

Susmita Ghosh sitzt am ultrasensitiven Massenspektrometer und stellt eine Proben ein.
8th September 2025

Gut Flora & Stroke: How Microorganisms Influence Our Immune System

Which factors can activate immune cells after a stroke? This question was investigated by researchers at University Hospital Essen and ISAS. Their work focused on the gut microbiota.

23rd July 2025

3 Questions for Dr Ali Ata Tuz

In his doctorate, Dr Ali Ata Tuz researched the causes of immunodeficiency after strokes and was already working closely with ISAS at the time. Following this, he subsequently devoted himself to the behaviour of immune cells in the bioimaging research group at ISAS. In this interview, the physician talks about his path from the clinic to application-oriented basic research.

Dr. Ali Ata Tuz sitzt am Konfokalmikroskop und schaut frontal in die Kamera.. Auf dem Bildschirm nebem dem Mirkoskop sind in grün und violett Mikroskopaufnahmen von einer Probe im Mikroskop zu sehen.
8th July 2025

Heart Failure Rarely Occurs on Its Own: ISAS Researchers Develop New Treatment Pillars

The symptoms, subsequent problems and therapeutic challenges of patients with heart failure are increasingly challenging for general practitioners and cardiologists. Doctors are limited in their choice of treatment options, especially for patients with additional diseases. At ISAS, researchers are therefore focussing on broadening the therapeutic spectrum.

Prof. Dr. Kristina Lorenz.
25th June 2025

New Ionisation Method: From Open Questions to Closed Plasma

Mass spectrometry only works with electrically charged, i.e. ionised, particles. Researchers often use plasma for this purpose. In a series of publications, scientists from the Miniaturisation Research Group have shed new light on this ionisation method and presented a completely new type of plasma. This does not require a continuous gas flow and is therefore particularly resource-efficient.

Cayian Tian adjusts the gas supply to the plasma.
11th June 2025

“We essentially ask ourselves the same questions”

In the ISAS cooperation project “The Secret World of the Immune System”, ISAS researchers and artists from the storyLab kiU at Dortmund University of Applied Sciences and Arts brought microscope data to life in an immersive space. Lennart Oberscheidt, research associate and visual effects (VFX) supervisor at storyLab kiU, talks about the special features of the project and the similarities between art and research in an interview.

30th May 2025

What Can't Be Missing From Your Project, Laxmikanth Kollipara?

In many research projects, there is one thing that is essential for success. Perhaps a rare sample or a special device? For Dr Laxmikanth Kollipara, that one thing is a very special pillar from the PIPMet project.

Dr Laxmikanth Kollipara stands in the laboratory holding a silver-coloured column. In the background are HPLC systems.
14th May 2025

“Moving to ISAS changed my whole view on mass spectrometry”

Prof Dr Miloš Filipović is researching the connection between ageing processes and gasotransmitter signalling pathways, in particular hydrogen sulphide. The biochemist headed the ERC Sulfaging group at ISAS from October 2020 until February 2025, at which point he was appointed to the University of Glasgow in Scotland. In this interview, he looks back on the past four and a half years in Dortmund and talks about his experiences at ISAS.

Dr. habil. Milos Filipovic.
30th April 2025

Humboldt Fellow Prof Dr Xiaowei Xu started at ISAS in March

Prof Dr Xiaowei Xu from the Chinese Guangdong Cardiovascular Institute is researching the clinical application of artificial intelligence (AI) in the context of cardiovascular diseases. For 18 months in total, he will be researching various AI methods for analysing cell images as a Humboldt Fellow at ISAS.

Prof Dr Xiaowei Xu in front of the ISAS city building.