Skip to content

Lipids, also known as fats, are considered to be a jack-of-all-trades in the molecular world: they are components of cell membranes, store energy or supply chemical building blocks for several hormones. As messenger substances, they also regulate the growth of cells. Lipid metabolism includes all processes from the absorption to the excretion of lipids. The analysis of these water-insoluble molecules provides insights into important processes in the body.

The lipid signature – the quantity, type and chemical structure of lipids – in tissue or blood differs between healthy and sick people. Consequently, this information can be used to establish a link between lipid signature and health status: For one thing, lipids have the potential to be used as biomarkers to assess the risk of various heart diseases or types of cancer by means of early testing. For another, lipid signatures could help to advance precision cancer medicine and to tailor therapies to patients even better in the future.

The research group focuses its work on lipid signatures in cardiovascular diseases and cancer, more specifically black skin cancer (malignant melanoma). The reason for this is the connection between drug-based tumour therapies and cardiovascular diseases: Depending on the treatment, for example with so-called immune checkpoint inhibitors, cancer patients have a significantly increased risk of heart damage. The topic of lipid metabolism of cancer cells in tumour therapy is still insufficiently researched.

For their analyses, the researchers in the junior research group Lipidomics combine complementary techniques such as imaging mass spectrometry and microscopy. Specifically: MALDI (Matrix Assisted Laser Desorption/Ionization), mass spectrometry and light or fluorescence microscopy.

Looking at lipids in the context of OMICS

An important aspect of the work at ISAS is the integration of lipid data into so-called multi-omics analyses. The term omics refers to molecular methods that enable a holistic characterisation of all genes (genomics), proteins (proteomics), metabolites (metabolomics) and lipids (lipidomics). In order to analyse different classes of molecules such as lipids, proteins or metabolites in one sample, however, the sample must remain intact. That is why the junior research group Lipidomics is focusing especially on the development of new omics methods that can be used to analyse different classes of molecules in a tissue or blood sample at the same time. The aim is to obtain information on different biomolecules, their quantity and spatial distribution within a sample, in order to be able to assess a disease in a way that is holistic as well as specific to each patient. To this end, the Lipidomics team will work together closely with other research groups at ISAS as well as with scientists at the University of Duisburg-Essen and the University Hospital Essen.

The junior research group Lipidomics is a cooperation with the University of Duisburg-Essen based on the Jülich model. Jun.-Prof Dr Sven Heiles holds a professorship at the University’s Faculty of Chemistry and heads the research group at ISAS at the same time.

Highlights

Projects

Team

Jun.-Prof. Dr. Sven Heiles

Research Group Leader

Department: Bioanalytics

Research group: Lipidomics

Portrait von Jun.-Prof. Dr. Sven Heiles.

Ajo Ahmad

Student Assistant

Department: Bioanalytics

Research group: Lipidomics

Belal Alshaar

Research Associate

Department: Bioanalytics

Research group: Lipidomics

Eike Brockmann

Research Associate

Department: Bioanalytics

Research group: Lipidomics

Portrait von  Eike Brockmann.

Carla Bröckers

Intern

Department: Bioanalytics

Research group: Lipidomics

Chiahsin Chi

Research Associate

Department: Bioanalytics

Research group: Lipidomics

Portrait von  Chiahsin Chi.

Elsa Gusseinov

Intern

Department: Bioanalytics

Research group: Lipidomics

Felix-Levin Hormann

Research Associate

Department: Bioanalytics

Research group: Lipidomics

Portrait von  Felix-Levin Hormann.

Jing Yu

Research Associate

Department: Bioanalytics

Research group: Lipidomics